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Paris CCdex 05, France 

Received 12 July 1988 

Abstract. A potential formulation of plane elasticity can be used to study a triangular 
lattice of elastic springs freely rotating at their endpoints. It provides a scalar formalism 
for central-force percolation. This emphasises the fact that the specificities of elastic 
percolation problems lie in fundamental properties such as invariance and symmetry, and 
not in the vectorial nature of the quantities used in the usual formulations. We map the 
central-force percolation problem for in-plane deformation onto a flexion problem of 
super-rigid and elastic plaquettes. 

Among the classes of percolation problems [ 11, central-force percolation [2] (hereafter 
refered to as CFP) is one of the most intriguing. It is very close to other elastic 
percolation problems with angular elasticity and, like these, describes the elasticity of 
randomly depleted materials close to their ruin. However, its geometrical properties 
are substantially different from usual connectivity percolation, i.e. both the usual scalar 
percolation problem and the angular elasticity percolation problem [3]. 

Theories for the rigidity of structures made out of bars date back more than a 
century (see Maxwell [4] for instance). This very same question is still a field of active 
mathematical research [ 51. In particular, the non-local character of rigidity has raised 
the important question of the eventual difference of universality class between CFP 

and usual percolation. Numerical simulations of this problem have not yet settled this 
point conclusively [2,3,6]. 

The wording ‘vector percolation’, used in the past to refer either to CFP only or to 
elastic problems as a whole, has introduced a misleading connection between the 
vectorial nature of the basic quantities involved-displacements and forces-and the 
difference between the critical exponents observed for elasticity and conductivity, i.e. 
a ‘scalar’ problem. We show in this letter that the vector aspect of the CFP problem 
has no intrinsic meaning, as it can be expressed as a scalar problem. 

The difference between the scalar problem and the CFP problem is still visible when 
the problems are linearised. This shows that the difference is not caused by some 
difference in a potential, as the 9‘ potential is different from the Gaussian one for 
magnetic systems. Rather, the difference is accounted for by more fundamental proper- 
ties such as invariance and symmetries. 
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In order to describe the CFP problem, let us consider a triangular lattice of elastic 
springs free to rotate at their endpoints, i.e. the sites of the lattice. Only a fraction p 
of the bonds chosen at random are present, the remaining springs (a  fraction 1-p) are 
removed. Let ui be the displacement vector at site i. We write the Hamiltonian of the 
lattice as 

where the sum runs over all present bonds ij, nij is a unit vector aligned with the bond 
i j  and k is the elastic constant of a bond. The conjugate variable of the displacement 
is a force (say A, in bond i j )  which is 

r;, = k ( n i j @ n u ) . ( u i  -U, ) .  (2) 
One of the basic difficulties associated with CFP is apparent in this formula: the 

operator that relates f to U is a projection operator ( n @ n ) .  This shows that the 
‘information’ transmitted through a bond is only partial and hence the rigidity is a 
non-local property. This is also responsible for the difficulties encountered in numerical 
simulations, in particular close to threshold. In the scalar formulation of this problem, 
however, the projection operator is not present. 

In the following, we will only work in the linear approximation of the CFP problem. 
This consists in letting the vector nu refer to the undefomed lattice, and not the actual 
direction of the bond when an exterior force is applied to the network. 

A possible, though not frequently used, way to handle the elasticity problem is to 
minimise H over all admissible fields of force. ‘Admissible’ means that the local 
equilibrium relations are fulfilled and that the boundary conditions are satisfied. 
Finding a complete set of admissible stresses is usually a very hard task. In our lattice 
problem, this turns out to be rather simple to achieve.’ 

Let us consider a ‘cartwheel’ structure as outlined in figure l (a) .  It consists of a 
hexagon of bonds subjected to a tension force cp and six radial bonds under compress- 
ion, -cp.  This cartwheel is in equilibrium. We can characterise this state of stress by 
the single scalar number cp that we label with the index of the site at the centre of the 
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Figure 1. (a)  ‘Cartwheel’ structure of the prestressed element in the triangular elastic 
lattice. Each radial bond of the hexagon is compressed with a force -(p whereas the 
perimeter bonds are stretched with the opposite force, (p. ( b )  The equivalent structure in 
a conductivity problem is a loop current JI. 
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hexagon. Due to linearity, we can superimpose on a lattice any combination of these 
localised prestressed structures. The resulting force distribution is admissible in the 
sense that the sum of forces on each site adds up to zero. Now, a simple counting of 
the degrees of constraints in the lattice gives one per site. If z is the coordination 
number of the lattice, we have z / 2  unknown forces and two scalar equations of 
equilibrium for each node, thus giving one unknown per site for a triangular lattice 
where z = 6. Therefore, all the admissible fields of forces can be generated by the 
scalar field Q. 

Using the variational property is now straightforward: the real intensity of the force 
in the bond 9, J j ,  is simply (see figure 2(a)) 

f. y = Q k ( i ,  j ) +  Q l ( i , j )  - vi - 'Pj (3)  
where k ( i , j )  and I ( i , j )  are the sites which form an elementary triangle with i and j ,  
and such that ( i ,  j, k( i , j ) )  and (j, i, I( i, j)) are oriented the same way. In order to find 
the actual distribution of forces in the network, we have to solve 

where the sum runs over all present bonds 
Q which satisfies the boundary conditions. 

and the minimum is taken over the set of 
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Figure 2. ( a )  The real force that is carried by the bond ij is A, = 9k + 'pI - ( p i  - 9, since ij 
is radial for the two hexagons centred in i and j on the perimeter of the ones centred at 
k and 1. ( b )  Similarly, for the conductivity problem, the real current flowing in bond ij is 
the difference j i j  = (& 

Let us mention here that this approach to the CFP problem is somewhat reminiscent 
of the potential formulation of plane elasticity through Airy functions [7]. In this 
formulation the stress tensor U is related to the Airy potential A by 
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and local equilibrium imposes that A is biharmonic, V4A = 0. The relation between 
the force f and the potential cp (3) can be seen as the discretisation of a second-order 
differential operator, as for the Airy potential. More precisely, for a bond oriented 
along the x axis one can show that Jj  will converge, as the lattice spacing a tends to 
zero, towards 

Aj + ( a 2 / 4 ) ( 3 q , y y  - c~,.xx)* ( 6 )  
In particular, we can see directly from this equation property that the force distribution 
is unaffected by the addition of a first-order polynomial in the spatial coordinates. 
This property is true also for a non-zero lattice spacing and is the potential formulation 
of the invariance of the elastic Hamiltonian under a rigid motion, i.e. rotation and 
translation. 

The equivalent formalism also works for the random-resistor network. Here, we 
make use of the loop currents in the network. In figure l(6), we show for a square 
lattice such a current distribution t,b, which is the equivalent of the cartwheel structure 
used in the CFP problem. The Kirchhoff laws are satisfied at every node, and here too, 
we generate all admissible current distribution in the lattice by a mere superposition 
of these elementary loop elements that we label by the index of the cell. The real 
current flowing into a bond ij is the difference between the two loop currents j i j =  
(t,bk - of the two adjacent cells shown in figure 2( 6). This relation is the equivalent 
of (3) for the elastic problem. 

We notice that, in the random-resistor network, the problem is invariant under the 
addition of a constant, and not a linear function as in the CFP case, where a first-order 
polynomial may be added. This is one simple way of viewing the difference between 
the CFP problem and the conductivity problem. 

t,bk is the loop current of cell k in the random-resistor network. The duality 
transformation, first used in connection with the random-resistor network by Straley 
[8], maps the cells of the original lattice onto the nodes of a dual lattice. The loop 
currents of the cells of the original lattice are then interpreted as the potenrials of the 
nodes in the dual lattice. Thus, we interpret $k as the potential of the kth node in the 
dual lattice. Since the currents of the original lattice appear as potentials in the dual 
lattice, we map the conductivity of the original lattice onto the resistivity of the dual 
lattice. As a consequence of this, missing bonds in the original lattice map onto 
superconducting bonds and the usual resistors in the original lattice map onto resistors 
in the dual lattice. This mapping has proved very useful in the study of the random- 
resistor network. 

With the scalar formulation of the CFP problem given above, a duality transformation 
corresponding to the one defined in connection with the random-resistor network may 
be defined. However, in this case the situation is more complex. The duality mapping 
gives rise to a new scalar problem, whose structure is different from either an elastic 
problem or a conductivity problem. In the following we give an interpretation of the 
problem the CFP problem turns into under the duality transformation. 

We have seen that the force carried by a bond ij is expressed as a linear combination 
of the potentials at the four sites (i jkl)  which form a lozenge whose shortest diagonal 
is ij. Let us consider a lozenge-shaped plaquette ijkl made out of an elastic material. 
Furthermore, consider the flexion of this element, obtained by imposing a given 
displacement z perpendicular to the plaquette, to the four vertex sites. In the limit of 
small displacements z, the flexural elastic energy of the plaquette is 

(7) E F = : h ( Z k  + z ,  - zi - Zj)’ 
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since this expression is the only second-order polynomial in z which is invariant under 
a rigid motion of the plaquette. h is a flexural elastic modulus. Therefore there exists 
only one mode of deformation for out-of-plane displacements. This mode is shown 
in figure 3. 

Figure 3. Deformation mode of the plaquettes considered. Only the four corners of the 
lozenge are connected to the other elements. 

This is the problem that the CFP problem maps into under the duality transformation. 
To each bond of the original triangular lattice, we associate a lozenge-shaped plaquette 
whose rigidity h is the inverse of the elastic constant k of the bond in the original 
lattice. Therefore a missing bond in the original lattice will be related to an infinitely 
rigid plaquette in the dual lattice, in the same way that a superconducting bond in the 
dual lattice is associated with a missing bond in the original random-resistor network. 
The corresponding dual lattice of a diluted CFP lattice will have all lozenges occupied, 
i.e. each triangle will be covered by three plaquettes. The plaquettes are attached 
together in such a way that all plaquettes sharing a common site i (12 of them) will 
have the same displacement at the point i, zi. The potential pi at site i is identified 
with the displacement zi. For convenience, we list below how the various quantities 
map into each other with this transformation. 

CFP Flexion 

Bond ij Plaquette ijkl 
Infinitely rigid Infinitely soft 
Infinitely soft Infinitely rigid 
Potential cp Displacement z 
Force (in-plane) Angle (out-of-plane) 
Elastic energy Elastic energy 
Elastic modulus Compliance (flexural) 

We now mention two consequences of the duality transformation we have just 
defined. At the central-force percolation threshold, and in-plane deformation, for the 
random depletion case, the elastic modulus Y goes to zero as [2,3,6] 

Y K ( P  - P * Y  (8) 
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whereas for the random reinforcement case, i.e. when super-rigid bars are put in with 
probability p, the rest of the bonds being springs with spring constant k, the elastic 
modulus diverges as [6,91 

Y c€ ( p *  - p ) - g .  (9) 

The duality transformation allows us to derive the following critical laws for the 
flexural modulus E For the depleted plaquette network with a fraction q of missing 
elements, F vanishes as 

F a ( q * - q ) ’  (10) 

where q* = 1 - p * .  For the super-rigid-elastic plaquette lattice with a fraction q of 
elastic elements, it diverges as 

Fa(q*-q)-’ .  ( 1 1 )  

Since the exponents f and g may be very different, f / g  = 3 as obtained in [ 6 ] ,  the 
interchange of the role played by both exponents is remarkable. We note, however, 
that a similar result is expected also for the case of systems with angular elasticity, 
e.g. beam lattice, where the critical behaviour occurs at the usual percolation threshold 

In addition to making the above duality transformation possible, the scalar formula- 
tion may have some other practical applications. For example, it is well known that 
the dynamics of relaxation processes is critically slowed down close to the threshold, 
a fact which is particularly true for elasticity problems [ l l ] .  This leads to a slow 
convergence of the numerical methods which relax the ‘error’ through the lattice. To 
control the convergence and accelerate it in a very efficient way, elaborate numerical 
tools have been developed [12]. However, the application of these methods to the 
case of a vector problem does not provide a significant improvement of raw relaxation 
methods. A reason that has been proposed to account for this is the decoupling made 
in the Fourier transform between x and y coordinates [ 131. If this is the basic reason, 
then the scalar formulation presented here should also constitute the basis of an efficient 
Fourier acceleration relaxation algorithm for this problem. 

Another example where this formulation of the CFP problem, or where the plaquette 
formulation of the dual problem, may be of use is the following. Some models of 
development of a crack in an elastic medium which mimic DLA processes have been 
considered by different groups [14]. The real DLA problem is a stochastic growth 
model in a harmonic potential V (satisfying V 2 V  = 0) and constant on the cluster 
already grown. The growth probability is proportional to the potential gradient. The 
corresponding elastic ‘DLA’ rupture problem would be a growth phenomenon, in a 
biharmonic potential (as mentioned for the Airy potential above). Here the growth 
probability is proportional to the force, i.e. a second differential operator acting on 
the potential field. The question of the universality class of the resulting structures is 
still a debated issue. In addition, the results of these studies may, through the present 
duality transformation, shed light on the corresponding processes in the flexion 
problem. 

We also mention that, for the CFP problem and its dual problem, a field theoretical 
formulation may be an efficient way of establishing the eventual difference of univer- 
sality class. This approach may be simplified by the present scalar formulation. 

Finally, and more generally, one could study the critical properties of a percolation- 
type system where transport properties are described by a Hamiltonian H, a function 

[lo]. 
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of a scalar field, and invariant under a given group of transformations 9. A general 
relation between the critical exponent(s) and the set 9 would constitute a general 
framework for transport theory of randomly diluted systems. For elasticity, these 
transformations are translations and rotations when expressed in terms of the displace- 
ment field, and they become the addition of any first-order polynomial to the scalar 
potential. 

It is a pleasure to acknowledge fruitful discussions with H J Herrmann and E Guyon. 
SR was supported by the ENPC and AH by SFB 125 of the DFG. 
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